Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.997
Filtrar
1.
Nat Commun ; 15(1): 2821, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561401

RESUMO

Activation of the p53 tumor suppressor triggers a transcriptional program to control cellular response to stress. However, the molecular mechanisms by which p53 controls gene transcription are not completely understood. Here, we uncover the critical role of spatio-temporal genome architecture in this process. We demonstrate that p53 drives direct and indirect changes in genome compartments, topologically associating domains, and DNA loops prior to one hour of its activation, which escort the p53 transcriptional program. Focusing on p53-bound enhancers, we report 340 genes directly regulated by p53 over a median distance of 116 kb, with 74% of these genes not previously identified. Finally, we showcase that p53 controls transcription of distal genes through newly formed and pre-existing enhancer-promoter loops in a cohesin dependent manner. Collectively, our findings demonstrate a previously unappreciated architectural role of p53 as regulator at distinct topological layers and provide a reliable set of new p53 direct target genes that may help designs of cancer therapies.


Assuntos
60634 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequências Reguladoras de Ácido Nucleico , DNA , Cromatina/genética
2.
Genome Biol ; 25(1): 83, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566111

RESUMO

BACKGROUND: The rise of large-scale multi-species genome sequencing projects promises to shed new light on how genomes encode gene regulatory instructions. To this end, new algorithms are needed that can leverage conservation to capture regulatory elements while accounting for their evolution. RESULTS: Here, we introduce species-aware DNA language models, which we trained on more than 800 species spanning over 500 million years of evolution. Investigating their ability to predict masked nucleotides from context, we show that DNA language models distinguish transcription factor and RNA-binding protein motifs from background non-coding sequence. Owing to their flexibility, DNA language models capture conserved regulatory elements over much further evolutionary distances than sequence alignment would allow. Remarkably, DNA language models reconstruct motif instances bound in vivo better than unbound ones and account for the evolution of motif sequences and their positional constraints, showing that these models capture functional high-order sequence and evolutionary context. We further show that species-aware training yields improved sequence representations for endogenous and MPRA-based gene expression prediction, as well as motif discovery. CONCLUSIONS: Collectively, these results demonstrate that species-aware DNA language models are a powerful, flexible, and scalable tool to integrate information from large compendia of highly diverged genomes.


Assuntos
DNA , Sequências Reguladoras de Ácido Nucleico , Sítios de Ligação , Alinhamento de Sequência , Algoritmos , Sequência Conservada/genética , Evolução Molecular
3.
Cell Genom ; 4(4): 100540, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604125

RESUMO

Mechanisms underlying phenotypic divergence across species remain unresolved. In this issue of Cell Genomics, Hansen, Fong, et al.1 systematically dissect human and rhesus macaque gene expression divergence by screening tens of thousands of orthologous elements for enhancer activity in lymphoblastoid cell lines, revealing a much greater role for trans divergence at levels equal to those of cis effects, counter to the prevailing consensus in the field.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Animais , Humanos , Macaca mulatta/genética , Sequências Reguladoras de Ácido Nucleico , Genômica
4.
Cell Genom ; 4(4): 100537, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604128

RESUMO

Transcriptional dysregulation is a hallmark of diffuse large B cell lymphoma (DLBCL), as transcriptional regulators are frequently mutated. However, our mechanistic understanding of how normal transcriptional programs are co-opted in DLBCL has been hindered by a lack of methodologies that provide the temporal resolution required to separate direct and indirect effects on transcriptional control. We applied a chemical-genetic approach to engineer the inducible degradation of the transcription factor FOXO1, which is recurrently mutated (mFOXO1) in DLBCL. The combination of rapid degradation of mFOXO1, nascent transcript detection, and assessment of chromatin accessibility allowed us to identify the direct targets of mFOXO1. mFOXO1 was required to maintain accessibility at specific enhancers associated with multiple oncogenes, and mFOXO1 degradation impaired RNA polymerase pause-release at some targets. Wild-type FOXO1 appeared to weakly regulate many of the same targets as mFOXO1 and was able to complement the degradation of mFOXO1 in the context of AKT inhibition.


Assuntos
Linfoma Difuso de Grandes Células B , Sequências Reguladoras de Ácido Nucleico , Humanos , Fatores de Transcrição/genética , Linfoma Difuso de Grandes Células B/genética , Proteína Forkhead Box O1/genética
5.
Cell Genom ; 4(4): 100536, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604126

RESUMO

Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.


Assuntos
Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Animais , Humanos , Macaca mulatta/genética , Sequências Reguladoras de Ácido Nucleico/genética , Regulação da Expressão Gênica/genética , Fatores de Transcrição/genética , Cromatina/genética
6.
Sci Rep ; 14(1): 8642, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622172

RESUMO

Cation exchanger (CAX) genes play an important role in plant growth/development and response to biotic and abiotic stresses. Here, we tried to obtain important information on the functionalities and phenotypic effects of CAX gene family by systematic analyses of their expression patterns, genetic diversity (gene CDS haplotypes, structural variations, gene presence/absence variations) in 3010 rice genomes and nine parents of 496 Huanghuazhan introgression lines, the frequency shifts of the predominant gcHaps at these loci to artificial selection during modern breeding, and their association with tolerances to several abiotic stresses. Significant amounts of variation also exist in the cis-regulatory elements (CREs) of the OsCAX gene promoters in 50 high-quality rice genomes. The functional differentiation of OsCAX gene family were reflected primarily by their tissue and development specific expression patterns and in varied responses to different treatments, by unique sets of CREs in their promoters and their associations with specific agronomic traits/abiotic stress tolerances. Our results indicated that OsCAX1a and OsCAX2 as general signal transporters were in many processes of rice growth/development and responses to diverse environments, but they might be of less value in rice improvement. OsCAX1b, OsCAX1c, OsCAX3 and OsCAX4 was expected to be of potential value in rice improvement because of their associations with specific traits, responsiveness to specific abiotic stresses or phytohormones, and relatively high gcHap and CRE diversity. Our strategy was demonstrated to be highly efficient to obtain important genetic information on genes/alleles of specific gene family and can be used to systematically characterize the other rice gene families.


Assuntos
Oryza , Melhoramento Vegetal , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética , Cátions/metabolismo , Variação Genética
7.
Sci Rep ; 14(1): 8743, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627506

RESUMO

The IVa subfamily of glycine-rich proteins (GRPs) comprises a group of glycine-rich RNA binding proteins referred to as GR-RBPa here. Previous studies have demonstrated functions of GR-RBPa proteins in regulating stress response in plants. However, the mechanisms responsible for the differential regulatory functions of GR-RBPa proteins in different plant species have not been fully elucidated. In this study, we identified and comprehensively studied a total of 34 GR-RBPa proteins from five plant species. Our analysis revealed that GR-RBPa proteins were further classified into two branches, with proteins in branch I being relatively more conserved than those in branch II. When subjected to identical stresses, these genes exhibited intensive and differential expression regulation in different plant species, corresponding to the enrichment of cis-acting regulatory elements involving in environmental and internal signaling in these genes. Unexpectedly, all GR-RBPa genes in branch I underwent intensive alternative splicing (AS) regulation, while almost all genes in branch II were only constitutively spliced, despite having more introns. This study highlights the complex and divergent regulations of a group of conserved RNA binding proteins in different plants when exposed to identical stress conditions. These species-specific regulations may have implications for stress responses and adaptations in different plant species.


Assuntos
Plantas , Sequências Reguladoras de Ácido Nucleico , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Glicina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
8.
Nat Genet ; 56(4): 615-626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594305

RESUMO

Translating genome-wide association study (GWAS) loci into causal variants and genes requires accurate cell-type-specific enhancer-gene maps from disease-relevant tissues. Building enhancer-gene maps is essential but challenging with current experimental methods in primary human tissues. Here we developed a nonparametric statistical method, SCENT (single-cell enhancer target gene mapping), that models association between enhancer chromatin accessibility and gene expression in single-cell or nucleus multimodal RNA sequencing and ATAC sequencing data. We applied SCENT to 9 multimodal datasets including >120,000 single cells or nuclei and created 23 cell-type-specific enhancer-gene maps. These maps were highly enriched for causal variants in expression quantitative loci and GWAS for 1,143 diseases and traits. We identified likely causal genes for both common and rare diseases and linked somatic mutation hotspots to target genes. We demonstrate that application of SCENT to multimodal data from disease-relevant human tissue enables the scalable construction of accurate cell-type-specific enhancer-gene maps, essential for defining noncoding variant function.


Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Humanos , Alelos , Estudo de Associação Genômica Ampla/métodos , Mapeamento Cromossômico , Fenótipo , Cromatina/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença/genética
9.
Sci Adv ; 10(15): eadk2082, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598634

RESUMO

We report an approach for cancer phenotyping based on targeted sequencing of cell-free DNA (cfDNA) for small cell lung cancer (SCLC). In SCLC, differential activation of transcription factors (TFs), such as ASCL1, NEUROD1, POU2F3, and REST defines molecular subtypes. We designed a targeted capture panel that identifies chromatin organization signatures at 1535 TF binding sites and 13,240 gene transcription start sites and detects exonic mutations in 842 genes. Sequencing of cfDNA from SCLC patient-derived xenograft models captured TF activity and gene expression and revealed individual highly informative loci. Prediction models of ASCL1 and NEUROD1 activity using informative loci achieved areas under the receiver operating characteristic curve (AUCs) from 0.84 to 0.88 in patients with SCLC. As non-SCLC (NSCLC) often transforms to SCLC following targeted therapy, we applied our framework to distinguish NSCLC from SCLC and achieved an AUC of 0.99. Our approach shows promising utility for SCLC subtyping and transformation monitoring, with potential applicability to diverse tumor types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Sequências Reguladoras de Ácido Nucleico , Regulação Neoplásica da Expressão Gênica
10.
Epigenetics Chromatin ; 17(1): 6, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481282

RESUMO

BACKGROUND: Prostate adenocarcinoma (PRAD) is the second leading cause of cancer-related deaths in men. High variability in DNA methylation and a high rate of large genomic rearrangements are often observed in PRAD. RESULTS: To investigate the reasons for such high variance, we integrated DNA methylation, RNA-seq, and copy number alterations datasets from The Cancer Genome Atlas (TCGA), focusing on PRAD, and employed weighted gene co-expression network analysis (WGCNA). Our results show that only single cluster of co-expressed genes is associated with genomic and epigenomic instability. Within this cluster, TP63 and TRIM29 are key transcription regulators and are downregulated in PRAD. We discovered that TP63 regulates the level of enhancer methylation in prostate basal epithelial cells. TRIM29 forms a complex with TP63 and together regulates the expression of genes specific to the prostate basal epithelium. In addition, TRIM29 binds DNA repair proteins and prevents the formation of the TMPRSS2:ERG gene fusion typically observed in PRAD. CONCLUSION: Our study demonstrates that TRIM29 and TP63 are important regulators in maintaining the identity of the basal epithelium under physiological conditions. Furthermore, we uncover the role of TRIM29 in PRAD development.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Metilação de DNA , Sequências Reguladoras de Ácido Nucleico , Instabilidade Cromossômica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
11.
Sci Rep ; 14(1): 7370, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548819

RESUMO

Class switch recombination (CSR) plays an important role in adaptive immune response by enabling mature B cells to replace the initial IgM by another antibody class (IgG, IgE or IgA). CSR is preceded by transcription of the IgH constant genes and is controlled by the super-enhancer 3' regulatory region (3'RR) in an activation-specific manner. The 3'RR is composed of four enhancers (hs3a, hs1-2, hs3b and hs4). In mature B cells, 3'RR activity correlates with transcription of its enhancers. CSR can also occur in primary developing B cells though at low frequency, but in contrast to mature B cells, the transcriptional elements that regulate the process in developing B cells are ill-known. In particular, the role of the 3'RR in the control of constant genes' transcription and CSR has not been addressed. Here, by using a mouse line devoid of the 3'RR and a culture system that highly enriches in pro-B cells, we show that the 3'RR activity is indeed required for switch transcription and CSR, though its effect varies in an isotype-specific manner and correlates with transcription of hs4 enhancer only.


Assuntos
Cadeias Pesadas de Imunoglobulinas , 60415 , Cadeias Pesadas de Imunoglobulinas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Switching de Imunoglobulina/genética , Linfócitos B , Isotipos de Imunoglobulinas/genética , Elementos Facilitadores Genéticos
12.
Genes (Basel) ; 15(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38540385

RESUMO

Phospholipase Ds (PLDs) are important phospholipid hydrolases in plants that play crucial roles in the regulation of plant growth, development, and stress tolerance. In this study, 14 PLD genes were identified in the tomato genome and were localized on eight chromosomes, and one tandem-duplicated gene pair was identified. According to a phylogenetic analysis, the genes were categorized into four subtypes: SlPLDα, ß, and δ belonged to the C2-PLD subfamily, while SlPLDζ belonged to the PXPH-PLD subfamily. The gene structure and protein physicochemical properties were highly conserved within the same subtype. The promoter of all the SlPLD genes contained hormone-, light-, and stress-responsive cis-acting regulatory elements, but no significant correlation between the number, distribution, and type of cis-acting elements was observed among the members of the same subtype. Transcriptome data showed that the expression of the SlPLD genes was different in multiple tissues. A quantitative RT-PCR analysis revealed that the SlPLD genes responded positively to cold, salt, drought, and abscisic acid treatments, particularly to salt stress. Different expression patterns were observed for different genes under the same stress, and for the same gene under different stresses. The results provide important insights into the functions of SlPLD genes and lay a foundation for further studies of the response of SlPLD genes to abiotic stresses.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Filogenia , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Genes Duplicados
13.
Commun Biol ; 7(1): 381, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553586

RESUMO

Genetic variants can influence complex traits by altering gene expression through changes to regulatory elements. However, the genetic variants that affect the activity of regulatory elements in pigs are largely unknown, and the extent to which these variants influence gene expression and contribute to the understanding of complex phenotypes remains unclear. Here, we annotate 90,991 high-quality regulatory elements using acetylation of histone H3 on lysine 27 (H3K27ac) ChIP-seq of 292 pig livers. Combined with genome resequencing and RNA-seq data, we identify 28,425 H3K27ac quantitative trait loci (acQTLs) and 12,250 expression quantitative trait loci (eQTLs). Through the allelic imbalance analysis, we validate two causative acQTL variants in independent datasets. We observe substantial sharing of genetic controls between gene expression and H3K27ac, particularly within promoters. We infer that 46% of H3K27ac exhibit a concomitant rather than causative relationship with gene expression. By integrating GWAS, eQTLs, acQTLs, and transcription factor binding prediction, we further demonstrate their application, through metabolites dulcitol, phosphatidylcholine (PC) (16:0/16:0) and published phenotypes, in identifying likely causal variants and genes, and discovering sub-threshold GWAS loci. We provide insight into the relationship between regulatory elements and gene expression, and the genetic foundation for dissecting the molecular mechanism of phenotypes.


Assuntos
Histonas , Sequências Reguladoras de Ácido Nucleico , Animais , Suínos/genética , Histonas/genética , Histonas/metabolismo , Fenótipo , Locos de Características Quantitativas , Fígado/metabolismo
14.
Mol Cell ; 84(8): 1406-1421.e8, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38490199

RESUMO

Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.


Assuntos
Células-Tronco Embrionárias Murinas , Sequências Reguladoras de Ácido Nucleico , Camundongos , Animais , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos
15.
BMC Genom Data ; 25(1): 31, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491426

RESUMO

BACKGROUND: Dates contain various minerals that are essential for good health. The major RNA interference (RNAi) gene families play a vital role in plant growth and development by controlling the expression of protein-coding genes against different biotic and abiotic stresses. However, these gene families for date palm are not yet studied. Therefore, this study has explored major RNAi genes and their characteristics in date palm. RESULTS: We have identified 4 PdDCLs, 7 PdAGOs, and 3 PdRDRs as RNAi proteins from the date palm genome by using AtRNAi genes as query sequences in BLASTp search. Domain analysis of predicted RNAi genes has revealed the Helicase_C, Dicer_dimer, PAZ, RNase III, and Piwi domains that are associated with the gene silencing mechanisms. Most PdRNAi proteins have been found in the nucleus and cytosol associated with the gene silencing actions. The gene ontology (GO) enrichment analysis has revealed some important GO terms including RNA interference, dsRNA fragmentation, and ribonuclease_III activity that are related to the protein-coding gene silencing mechanisms. Gene regulatory network (GRN) analysis has identified PAZ and SNF2 as the transcriptional regulators of PdRNAi genes. Top-ranked 10 microRNAs including Pda-miR156b, Pda-miR396a, Pda-miR166a, Pda-miR167d, and Pda-miR529a have been identified as the key post-transcriptional regulators of PdRNAi genes that are associated with different biotic/abiotic stresses. The cis-acting regulatory element analysis of PdRNAi genes has detected some vital cis-acting elements including ABRE, MBS, MYB, MYC, Box-4, G-box, I-box, and STRE that are linked with different abiotic stresses. CONCLUSION: The results of this study might be valuable resources for the improvement of different characteristics in date palm by further studies in wet-lab.


Assuntos
MicroRNAs , Phoeniceae , Phoeniceae/genética , Interferência de RNA , Genoma , Sequências Reguladoras de Ácido Nucleico
16.
PLoS Genet ; 20(3): e1011174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437180

RESUMO

A striking paradox is that genes with conserved protein sequence, function and expression pattern over deep time often exhibit extremely divergent cis-regulatory sequences. It remains unclear how such drastic cis-regulatory evolution across species allows preservation of gene function, and to what extent these differences influence how cis-regulatory variation arising within species impacts phenotypic change. Here, we investigated these questions using a plant stem cell regulator conserved in expression pattern and function over ~125 million years. Using in-vivo genome editing in two distantly related models, Arabidopsis thaliana (Arabidopsis) and Solanum lycopersicum (tomato), we generated over 70 deletion alleles in the upstream and downstream regions of the stem cell repressor gene CLAVATA3 (CLV3) and compared their individual and combined effects on a shared phenotype, the number of carpels that make fruits. We found that sequences upstream of tomato CLV3 are highly sensitive to even small perturbations compared to its downstream region. In contrast, Arabidopsis CLV3 function is tolerant to severe disruptions both upstream and downstream of the coding sequence. Combining upstream and downstream deletions also revealed a different regulatory outcome. Whereas phenotypic enhancement from adding downstream mutations was predominantly weak and additive in tomato, mutating both regions of Arabidopsis CLV3 caused substantial and synergistic effects, demonstrating distinct distribution and redundancy of functional cis-regulatory sequences. Our results demonstrate remarkable malleability in cis-regulatory structural organization of a deeply conserved plant stem cell regulator and suggest that major reconfiguration of cis-regulatory sequence space is a common yet cryptic evolutionary force altering genotype-to-phenotype relationships from regulatory variation in conserved genes. Finally, our findings underscore the need for lineage-specific dissection of the spatial architecture of cis-regulation to effectively engineer trait variation from conserved productivity genes in crops.


Assuntos
Arabidopsis , Arabidopsis/genética , Sequências Reguladoras de Ácido Nucleico/genética , Produtos Agrícolas , Alelos , Sequência de Aminoácidos
17.
Genome Biol ; 25(1): 78, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519979

RESUMO

We develop a large-scale single-cell ATAC-seq method by combining Tn5-based pre-indexing with 10× Genomics barcoding, enabling the indexing of up to 200,000 nuclei across multiple samples in a single reaction. We profile 449,953 nuclei across diverse tissues, including the human cortex, mouse brain, human lung, mouse lung, mouse liver, and lung tissue from a club cell secretory protein knockout (CC16-/-) model. Our study of CC16-/- nuclei uncovers previously underappreciated technical artifacts derived from remnant 129 mouse strain genetic material, which cause profound cell-type-specific changes in regulatory elements near many genes, thereby confounding the interpretation of this commonly referenced mouse model.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Animais , Camundongos , Humanos , Cromatina/metabolismo , Núcleo Celular/genética , Sequências Reguladoras de Ácido Nucleico
18.
Nat Commun ; 15(1): 2030, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448444

RESUMO

The genetic basis of human facial variation and craniofacial birth defects remains poorly understood. Distant-acting transcriptional enhancers control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development. However, a lack of accurate maps of the genomic locations and cell type-resolved activities of craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combine histone modification, chromatin accessibility, and gene expression profiling of human craniofacial development with single-cell analyses of the developing mouse face to define the regulatory landscape of facial development at tissue- and single cell-resolution. We provide temporal activity profiles for 14,000 human developmental craniofacial enhancers. We find that 56% of human craniofacial enhancers share chromatin accessibility in the mouse and we provide cell population- and embryonic stage-resolved predictions of their in vivo activity. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.


Assuntos
Cromatina , Sequências Reguladoras de Ácido Nucleico , Humanos , Animais , Camundongos , Cromatina/genética , Perfilação da Expressão Gênica , Genômica , Processamento de Proteína Pós-Traducional
19.
Nat Genet ; 56(4): 627-636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514783

RESUMO

We present a gene-level regulatory model, single-cell ATAC + RNA linking (SCARlink), which predicts single-cell gene expression and links enhancers to target genes using multi-ome (scRNA-seq and scATAC-seq co-assay) sequencing data. The approach uses regularized Poisson regression on tile-level accessibility data to jointly model all regulatory effects at a gene locus, avoiding the limitations of pairwise gene-peak correlations and dependence on peak calling. SCARlink outperformed existing gene scoring methods for imputing gene expression from chromatin accessibility across high-coverage multi-ome datasets while giving comparable to improved performance on low-coverage datasets. Shapley value analysis on trained models identified cell-type-specific gene enhancers that are validated by promoter capture Hi-C and are 11× to 15× and 5× to 12× enriched in fine-mapped eQTLs and fine-mapped genome-wide association study (GWAS) variants, respectively. We further show that SCARlink-predicted and observed gene expression vectors provide a robust way to compute a chromatin potential vector field to enable developmental trajectory analysis.


Assuntos
Cromatina , Estudo de Associação Genômica Ampla , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , RNA , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...